

MANAGEMENT OF INNOVATION IN THE AGRICULTURAL & FOOD SYSTEMS OF THE MEDITERRANEAN REGION

(Gestione dell'Innovazione nei Sistemi Agroalimentari della Regione Mediterranea)

Giovedì 1 Giugno 2017
Dipartimento di Scienze Agrarie, degli Alimenti
e dell'Ambiente (SAFE)
Via Napoli 25 Foggia – Aula Magna "Di Stefano"

QUALITY AND DRYING BEHAVIOUR OF ORGANIC FRUIT PRODUCTS

Prof. Riccardo Massantini

Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy)

■ massanti@unitus.it

11th Workshop on Management of innovation in the agricultural and food systems of the Mediterranean region – June 1, Foggia, Italy

OUR RESEARCH GROUP AND COMPETENCES

RICCARDO MASSANTINI ASSOCIATE PROFESSOR

ROBERTO MOSCETTI

POST-DOC

FLAVIO RAPONI PH.D. STUDENT 2ND YEAR

SERENA FERRI PH.D STUDENT 1ST YEAR

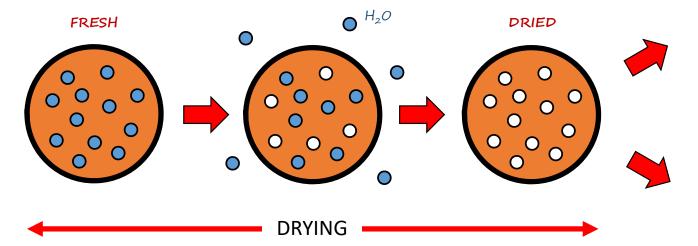
- 1. Chemical, physical and physicochemical analysis on food
- 2. Image analysis and computer vision
- 3. Vis/NIR and SWIR single-point spectroscopy and hyperspectral imaging
- 4. Chemometrics and Machine Learning (e.g. Deep Learning and Transfer Learning)
- 5. Internet of Things and sensors
- 6. virtual development environment, 4GL software (i.e. R, Python and Matlab) and agnostic programming platforms

DRYING OF FOOD CONSISTS OF THREE STEPS ...

11TH WORKSHOP ON MANAGEMENT OF INNOVATION IN THE AGRICULTURAL AND FOOD SYSTEMS OF THE MEDITERRANEAN REGION — JUNE 1, FOGGIA, ITALY

PRE-DRYING PROCESSING

IT DEPENDS ON THE PHYSICAL STATE OF THE MATERIAL SUBJECTED TO DRYING



DRYING

READY-TO-EAT

QUALITY INDICES ASSESSED BY CONSUMERS

SEMI-PRODUCT

QUALITY INDICES IMPORTANT IN FURTHER
PROCESSING AND AFFECTING PROPERTIES OF THE
FINAL PRODUCT

11th Workshop on Management of innovation in the agricultural and food systems of the Mediterranean region — June 1, Foggia, Italy

POST-DRYING HANDLING

THE DRY PRODUCT IS NOT IN A THERMODYNAMIC EQUILIBRIUM STATE

- PRE-DRYING TREATMENTS AND DRYING AFFECT PRODUCT STORABILITY
- » POST-DRYING TREATMENTS SHOULD MINIMIZE OR PROTECT THE MATERIAL FROM FURTHER CHANGES
- PRODUCT IS MORE STABLE WHEN IT IS IN A GLASSY STATE THAN IN RUBBERY STATE
- CONTACT WITH OXYGEN PROMOTES OXIDATION OF LIPID-LIKE SUBSTANCES (I.E. CAROTENOIDS)
- » Post-drying processing is also intended to add value to the final product

PHYSICOCHEMICAL CHANGES

- » Moisture content and water activity
- » SHAPE AND SIZE
- » FIRMNESS AND TEXTURE
- » PIGMENTS CONTENT
- » ENZYMATIC AND NON-ENZYMATIC BROWNING

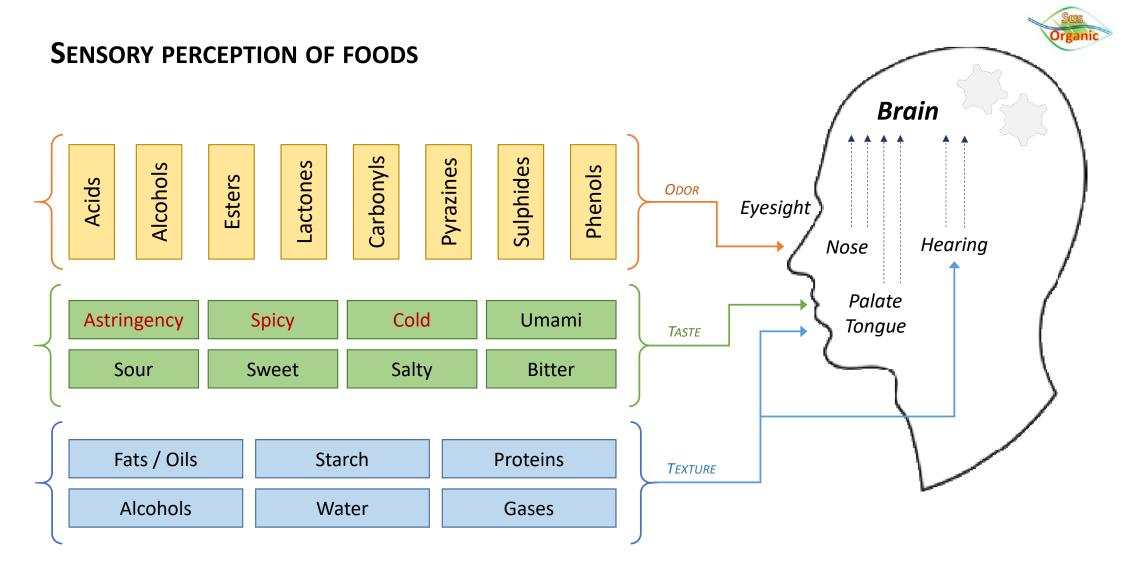
NUTRITIONAL CHANGES

- » VITAMINS CONTENT
- » CAROTENOIDS CONTENT
- » Total polyphenolic content
- » ANTIOXYDANT CAPACITY

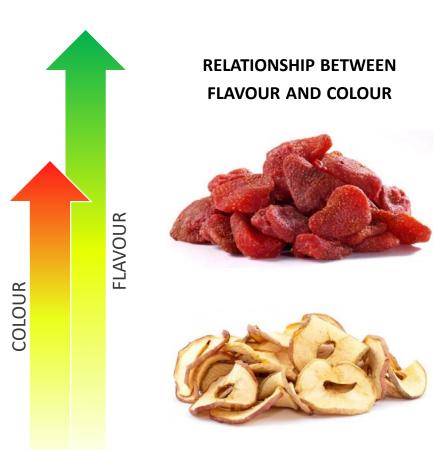
SENSORIAL CHARACTERISTICS

11TH WORKSHOP ON MANAGEMENT OF INNOVATION IN THE AGRICULTURAL AND FOOD SYSTEMS OF THE MEDITERRANEAN REGION – JUNE 1, FOGGIA, ITALY

WHICH ARE THE MAIN INTERESTS OF AN ORGANIC CONSUMER?



FINALLY, YET IMPORTANTLY, DEMAND FOR ORGANIC FOODS IS DRIVEN PRIMARILY BY CONSUMER PERCEPTIONS OF THEIR QUALITY



BIASED PERCEPTION OF FOOD QUALITY

RELATIONSHIP BETWEEN FLAVOUR AND SIZE, SHAPE, STRUCTURE AND PACKAGING

QUALITY AND DRYING BEHAVIOUR OF ORGANIC FRUIT PRODUCTS 11th Workshop on Management of innovation in the agricultural and food systems

11th Workshop on Management of innovation in the agricultural and food systems of the Mediterranean region – June 1, Foggia, Italy

NUTRITIONAL VALUE OF ORGANIC AND CONVENTIONAL FOODS

AGRONOMIC VARIABLES	PRODUCTION METHODS	FARM LOCATION		
Cultivar	Duration	Geographical location		
Soil type	Replication	Climate		
Organic matter	Statistical design	Seasonal variations		
Planting date	Sampling of plant	Storage conditions		
Harvest date	Sample size	Post-harvest processing		
Trace elements	Nutritional analyses	Plant disease		

11TH WORKSHOP ON MANAGEMENT OF INNOVATION IN THE AGRICULTURAL AND FOOD SYSTEMS OF THE MEDITERRANEAN REGION — JUNE 1, FOGGIA, ITALY

OUR RESEARCH WORK

CARROT

Daucus carota L. var. Romance

Shape and size
Slices of 3-mm thickness

Pretreatment *Hot-water blanching*

Drying temperature 40°C (for 8 h)

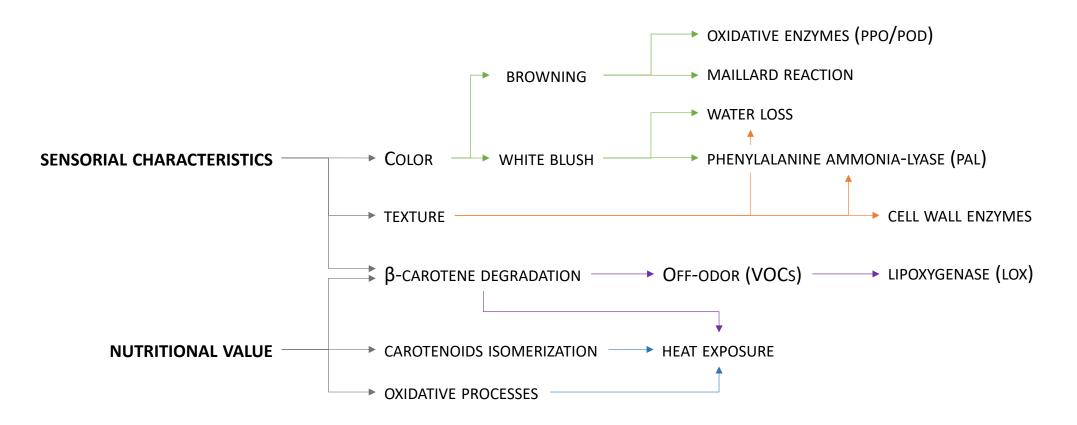
APPLE

Malus domestica B. var. Gala

Shape and sizeWedges of 3-mm thickness

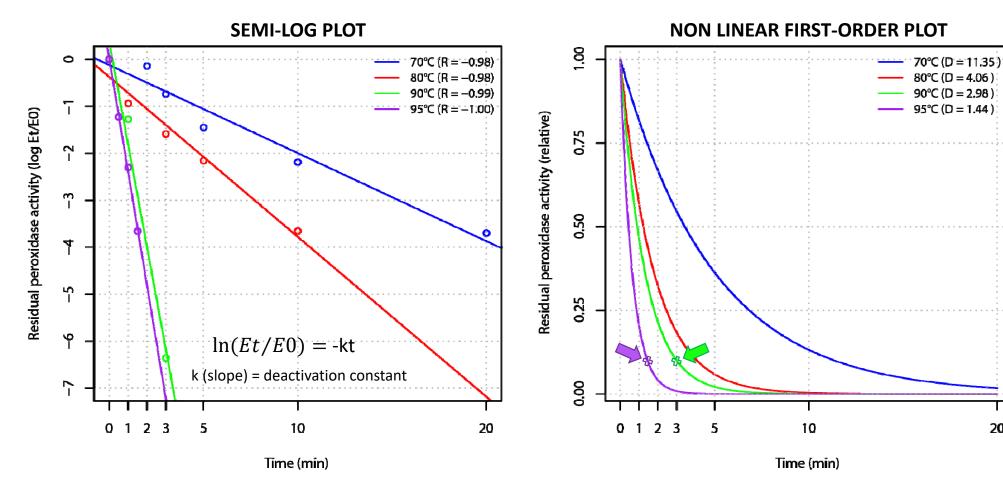
Pretreatment *Hot-water blanching*

Drying temperature 60°C (for 8 h)


11th Workshop on Management of innovation in the agricultural and food systems of the Mediterranean region — June 1, Foggia, Italy

QUALITY PARAMETERS AFFECTED BY DRYING PROCESS

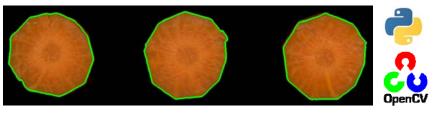
11TH WORKSHOP ON MANAGEMENT OF INNOVATION IN THE AGRICULTURAL AND FOOD SYSTEMS OF THE MEDITERRANEAN REGION - JUNE 1, FOGGIA, ITALY



20

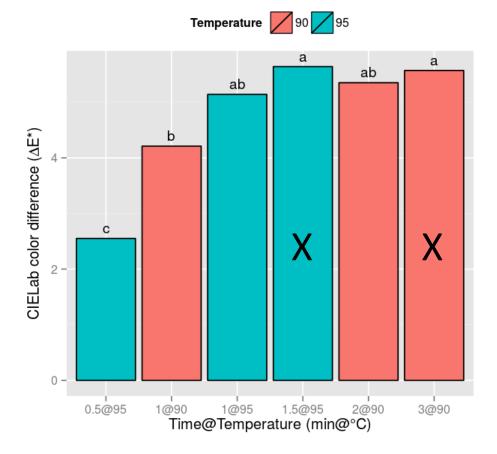
HOT-WATER BLANCHING - PEROXIDASE ACTIVITY -

11th Workshop on Management of innovation in the agricultural and food systems of the Mediterranean region – June 1, Foggia, Italy



HOT-WATER BLANCHING - COLOR ANALYSIS -

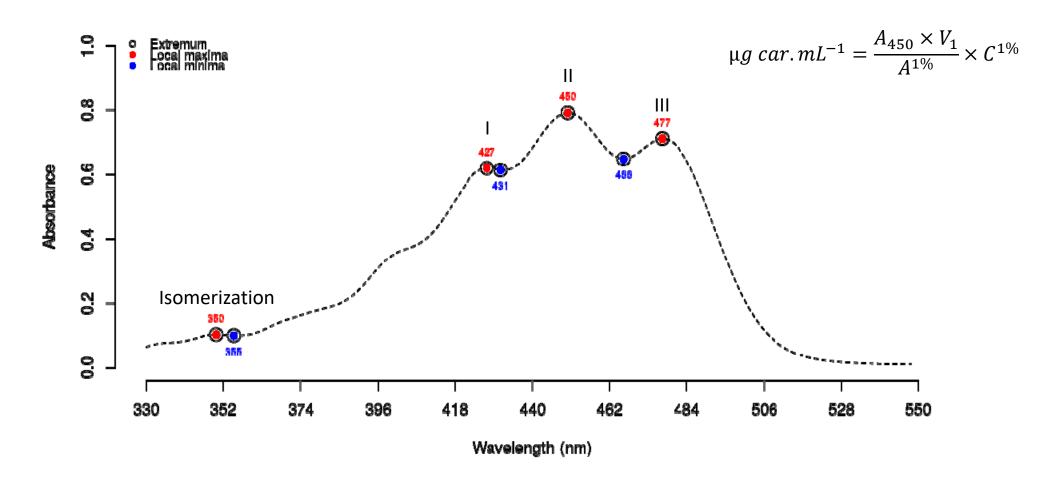
EXPERIMENTAL PROTOCOL


- > Product: carrot slices
- > Slice thickness: 5 mm
- > Blanching temperature: 90, 95°C
- > Blanching time at 90°C: 0.0, 1.0, 2.0, <u>3.0</u> min
- > Blanching time at 95°C: 0.0, 0.5, 1.0, <u>1.5</u> min

BLANCHING EFFECTS ON CARROT COLOR COORDINATES

- Decrease in Luminance (L*)
- Increase in Hue Angle (h)
- Decrease in Chroma (C*)
- Increase in ΔE* (>5, high difference between colors)

Blanching comparison (90°C vs 95°C)



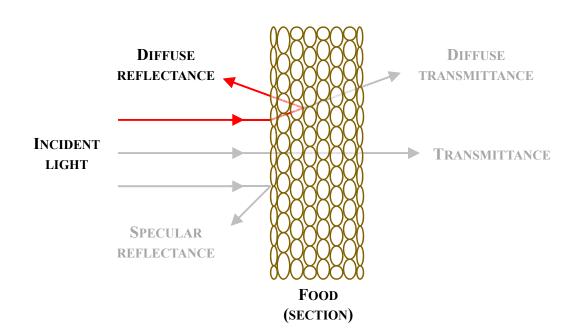
HOT-WATER BLANCHING - TOTAL CAROTENOIDS -

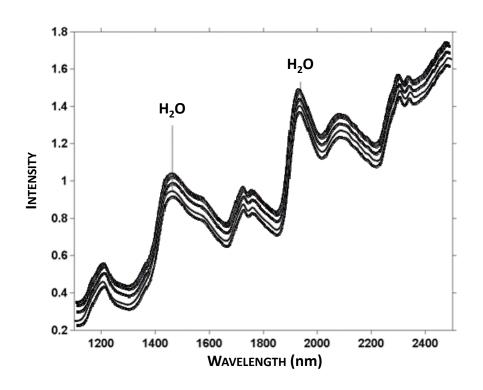
HOT-WATER BLANCHING - TOTAL CAROTENOIDS -

11TH WORKSHOP ON MANAGEMENT OF INNOVATION IN THE AGRICULTURAL AND FOOD SYSTEMS OF THE MEDITERRANEAN REGION — JUNE 1, FOGGIA, ITALY

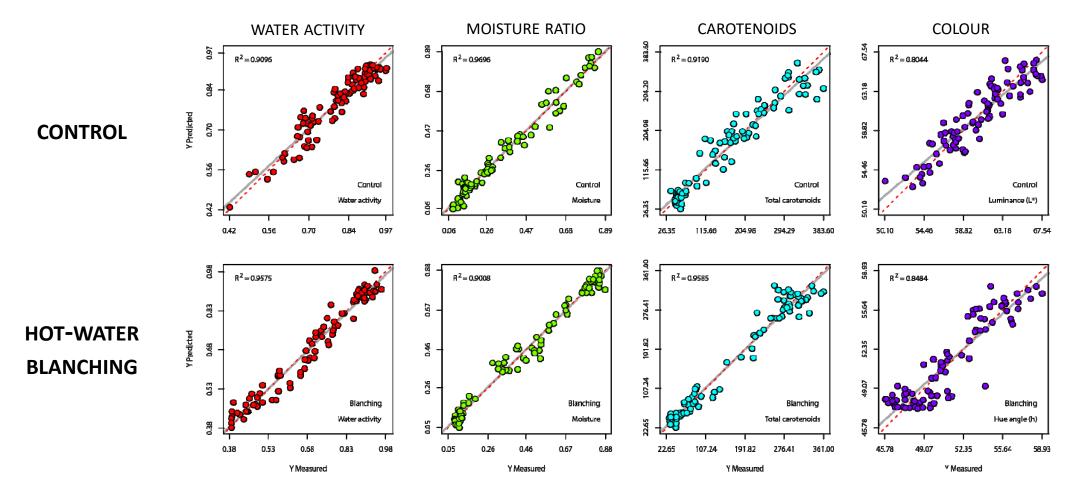
QUALITY PARAMETERS DURING 8-H DRYING

Treatment	Drying phase (K-means)	Drying time (hour)	Water activity (a _w)	Moisture (relative)	SSC (°Brix)	Lightness (<i>L*</i>)	Hue angle (h)	Total carotenoids
Control		0	0.88 ± 0.04 a 📥	0.90 ± 0.02 a 📥	6.35 ± 1.43 f	53.61 ± 1.47 f	51.82 ± 0.37 bc	50.75 ± 3.05 d
	1	1	0.84 ± 0.04 ab	0.86 ± 0.01 ab	8.58 ± 0.99 ef	57.38 ± 1.36 e	53.43 ± 0.50 ab	52.90 ± 5.66 d
		2	0.82 ± 0.05 b	0.85 ± 0.01 ab	8.56 ± 1.27 ef	58.70 ± 1.60 de	53.32 ± 0.62 bc	66.26 ± 15.09 d
		3	0.64 ± 0.03 c	0.82 ± 0.03 b	10.57 ± 1.64 de	61.65 ± 4.28 bcd	50.40 ± 1.38 c	154.88 ± 37.01 c
	II	4	0.62 ± 0.03 c	0.67 ± 0.09 c	14.69 ± 3.15 bc	64.67 ± 2.14 ab	50.18 ± 0.95 c	205.63 ± 87.36 bc
		5	0.45 ± 0.03 d	0.72 ± 0.05 c	12.02 ± 3.54 cde	62.86 ± 2.68 abc	53.17 ± 1.93 bc	261.22 ± 81.76 ab
		6	0.46 ± 0.04 d	0.49 ± 0.15 d	14.09 ± 5.80 cd	65.12 ± 1.49 a 🐈	55.16 ± 2.32 ab	294.65 ± 61.04 a
	Ш	7	0.45 ± 0.04 d	0.45 ± 0.09 d	18.67 ± 5.25 ab	58.86 ± 2.69 de	51.89 ± 1.17 bc	297.32 ± 44.30 a
		8	0.42 ± 0.02 d	0.25 ± 0.07 e 📥	20.02 ± 7.25 a 🛨	60.63 ± 2.23 de	50.52 ± 0.96 c	178.68 ± 29.63 c
		p value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
		HSD	0.04	0.06	3.99	2.72	1.84	71.30
lot-water		0	0.91 ± 0.03 a 📥	0.91 ± 0.01 a 📥	5.75 ± 0.51 c 💻	49.00 ± 1.89 c	56.55 ± 1.98 a 🕂	35.74 ± 6.25 d
lanching	1	1	0.90 ± 0.02 a	0.89 ± 0.01 a	5.35 ± 0.75 c	50.55 ± 2.33 c	56.12 ± 1.66 a	45.27 ± 11.11 d
		2	0.88 ± 0.03 a	0.86 ± 0.02 a	7.13 ± 2.21 c	51.42 ± 1.84 bc	55.00 ± 1.41 a	65.18 ± 17.70 cd
		3	0.77 ± 0.03 b	0.63 ± 0.07 b	7.40 ± 1.69 c	59.91 ± 2.72 a	51.86 ± 1.36 b	89.97 ± 24.46 cd
		4	0.70 ± 0.08 c	0.44 ± 0.14 c	15.96 ± 6.14 b	60.13 ± 2.33 a	49.77 ± 2.30 cd	239.58 ± 47.43 b
	II	5	0.68 ± 0.07 c	0.49 ± 0.08 c	19.55 ± 7.37 b	60.96 ± 2.25 a	50.61 ± 2.01 bc	234.04 ± 78.81 b
		6	0.50 ± 0.07 d	0.20 ± 0.07 d	35.79 ± 8.08 a	54.82 ± 7.16 b	48.79 ± 1.89 de	292.47 ± 69.77 a
	Ш	7	0.49 ± 0.08 d	0.19 ± 0.03 d	31.68 ± 6.09 a	52.63 ± 3.47 bc	47.50 ± 1.38 e ▼	275.45 ± 27.87 ab
		8	0.40 ± 0.02 e	0.17 ± 0.02 d	32.71 ± 8.72 a 🖶	54.72 ± 6.27 c	47.66 ± 1.08 e	304.57 ± 31.62 a
		p value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
		HSD	0.05	0.06	5.53	3.83	1.71	42.54

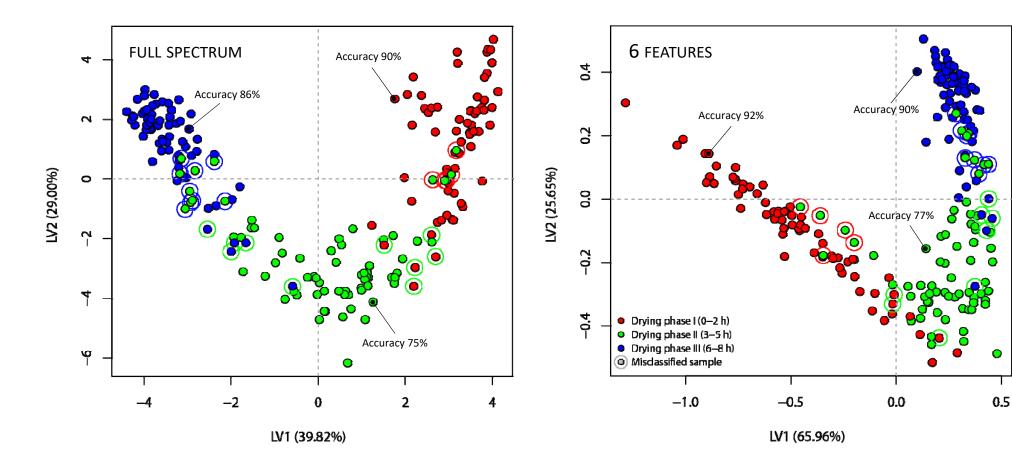

11th Workshop on Management of innovation in the agricultural and food systems of the Mediterranean region – June 1, Foggia, Italy



NIR SPECTROSCOPY TO MONITOR THE DRYING PROCESS


11TH WORKSHOP ON MANAGEMENT OF INNOVATION IN THE AGRICULTURAL AND FOOD SYSTEMS OF THE MEDITERRANEAN REGION — JUNE 1, FOGGIA, ITALY

PARTIAL LEAST SQUARES (PLS) REGRESSION MODELS


11th Workshop on Management of innovation in the agricultural and food systems of the Mediterranean region – June 1, Foggia, Italy

PLS DISCRIMINANT ANALYSIS - CLASSIFICATION MODELS

11th Workshop on Management of innovation in the agricultural and food systems of the Mediterranean region — June 1, Foggia, Italy

CONCLUSIONS

- 1. PPO (apple) and POD (carrot) activities were monitored as markers for enzyme inactivation
- 2. Hot-water blanching for 1.5 min at 95°C was selected as the best feasible pre-treatment on carrot
- 3. Results showed advantages of NIR spectroscopy for online monitoring of moisture ratio, water activity, colour and nutrients in both apple and carrot
- 4. NIR spectral profiles allowed recognition of drying phases in both apple and carrot
- Prediction models based on few wavelengths showed metrics comparable to models obtained from full spectra

QUALITY AND DRYING BEHAVIOUR OF ORGANIC FRUIT PRODUCTS 11TH WORKSHOP ON MANAGEMENT OF INNOVATION IN THE AGRICULTURAL AND FOOD SYSTEMS

OF THE MEDITERRANEAN REGION – JUNE 1, FOGGIA, ITALY

CORE organic

THANK YOU FOR YOUR ATTENTION